Msi RNA-binding proteins control reserve intestinal stem cell quiescence
نویسندگان
چکیده
Regeneration of the intestinal epithelium is driven by multiple intestinal stem cell (ISC) types, including an active, radiosensitive Wnthigh ISC that fuels turnover during homeostasis and a reserve, radioresistant Wntlow/off ISC capable of generating active Wnthigh ISCs. We examined the role of the Msi family of oncoproteins in the ISC compartment. We demonstrated that Msi proteins are dispensable for normal homeostasis and self-renewal of the active ISC, despite their being highly expressed in these cells. In contrast, Msi proteins are required specifically for activation of reserve ISCs, where Msi activity is both necessary and sufficient to drive exit from quiescence and entry into the cell cycle. Ablation of Msi activity in reserve ISCs rendered the epithelium unable to regenerate in response to injury that ablates the active stem cell compartment. These findings delineate a molecular mechanism governing reserve ISC quiescence and demonstrate a necessity for the activity of this rare stem cell population in intestinal regeneration.
منابع مشابه
Drosophila Rbp6 Is an Orthologue of Vertebrate Msi-1 and Msi-2, but Does Not Function Redundantly with dMsi to Regulate Germline Stem Cell Behaviour
The vertebrate RNA-binding proteins, Musashi-1 (Msi-1) and Musashi-2 (Msi-2) are expressed in multiple stem cell populations. A role for Musashi proteins in preventing stem cell differentiation has been suggested from genetic analysis of the Drosophila family member, dMsi, and both vertebrate Msi proteins function co-operatively to regulate neural stem cell behaviour. Here we have identified a ...
متن کاملExpression of neural RNA-binding proteins in the postnatal CNS: implications of their roles in neuronal and glial cell development.
There is an increasing interest in the role of RNA-binding proteins during neural development. Mouse-Musashi-1 (m-Msi-1) is a mouse neural RNA-binding protein with sequence similarity to Drosophila musashi (d-msi), which is essential for neural development. m-Msi-1 is highly enriched in neural precursor cells that are capable of generating both neurons and glia during embryonic CNS development....
متن کاملThe Msi Family of RNA-Binding Proteins Function Redundantly as Intestinal Oncoproteins.
Members of the Msi family of RNA-binding proteins have recently emerged as potent oncoproteins in a range of malignancies. MSI2 is highly expressed in hematopoietic cancers, where it is required for disease maintenance. In contrast to the hematopoietic system, colorectal cancers can express both Msi family members, MSI1 and MSI2. Here, we demonstrate that, in the intestinal epithelium, Msi1 and...
متن کاملThyroid hormone-upregulated expression of Musashi-1 is specific for progenitor cells of the adult epithelium during amphibian gastrointestinal remodeling.
In the amphibian gastrointestine during metamorphosis, the primary (larval) epithelium undergoes apoptosis. By contrast, a small number of undifferentiated cells including stem cells actively proliferate and differentiate into the secondary (adult) epithelium that resembles the mammalian counterpart. In the present study, to clarify whether Musashi-1 (Msi-1), an RNA-binding protein, serves as a...
متن کاملDclk1+ small intestinal epithelial tuft cells display the hallmarks of quiescence and self-renewal
To date, no discrete genetic signature has been defined for isolated Dclk1+ tuft cells within the small intestine. Furthermore, recent reports on the functional significance of Dclk1+ cells in the small intestine have been inconsistent. These cells have been proposed to be fully differentiated cells, reserve stem cells, and tumor stem cells. In order to elucidate the potential function of Dclk1...
متن کامل